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SPONTANEOUS GENERATION OF MODULAR INVARIANTS 

HARVEY COHN AND JOHN MCKAY 

ABSTRACT. It is possible to compute j(T) and its modular equations with no 
perception of its related classical group structure except at no. We start by 
taking, for p prime, an unknown "p-Newtonian" polynomial equation g(u, v) = 
0 with arbitrary coefficients (based only on Newton's polygon requirements at 
oo for u = j(T) and v = j(pT)). We then ask which choice of coefficients 
of g(u,v) leads to some consistent Laurent series solution u = u(q) 1/q, 
v = u(qP) (where q = exp 27riT). It is conjectured that if the same Laurent 
series u(q) works for p-Newtonian polynomials of two or more primes p, then 
there is only a bounded number of choices for the Laurent series (to within 
an additive constant). These choices are essentially from the set of "replicable 
functions," which include more classical modular invariants, particularly u = 

j(Q). A demonstration for orders p = 2 and 3 is done by computation. More 
remarkably, if the same series u(q) works for the p-Newtonian polygons of 15 
special "Fricke-Monster" values of p, then (u =)j(T) is (essentially) determined 
uniquely. Computationally, this process stands alone, and, in a sense, modular 
invariants arise "spontaneously." 

1. INTRODUCTION 

Deferring definitions for later, we note the classical result [9] that the modular 
function j (T) determines a modular equation (polynomial relation between j (T) and 
j(NT) for 1 < N(E Z)). In a neoclassical mode, the process can be reversed and the 
modular equation can be used to determine the modular function by substituting 
Laurent series with undetermined coefficients (see Lehmer [11], Mahler [12]). 

We further show how the precise modular equation need not be known as a 
prelude to finding the modular function, only general information of orders of mag- 
nitude. It is as though the modular equations arise without the usual structure 
of elliptic curves, Eisenstein series, and modular groups, indeed as though through 
"spontaneous generation." 

The goal of treating modular equations as the primary unknown might be reason- 
able in view of the current "reconstruction" of modular equations caused by work 
of Conway, McKay, Norton and others (see [1,7,8,14]) on the characters of the Mon- 
ster group, and in a more specialized context by work of Cohn [5] on determination 
of modular equations by class-field theoretic properties. 
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To quickly review definitions, the modular group F acting on the upper half-plane 
H+ is defined by 
(L. la) 

H+ : R-> 0, r = SL2 (Z) = {T c?D ABCD E Z. AD -BC=1}. 

The fundamental domain for H+1r is the region 

(LI.b) jz ? 1, jRzj < 1/2, 

with boundary identifications based on the generators of r: 

(l Ic) r = ( -- T + 1, T ---1/T). 

Then with suitable compactification, inherent in the local parameter 

(1.2a) q = exp 27riT, 

a global uniformizing parameter (Hauptmodul) is introduced, 

(1.2b) j(T) = 1/q + 744 + 196884q + 21493760q2?+ , 

which maps the fundamental domain in (1.lb) uniquely onto the j-plane. The ob- 
servation of McKay that these coefficients occur in a character table of the Monster 
group was the first clue to a long series of related results. 

Suppose we want to find the modular equation (of prime order p only) 

(1.3a) Dp(j(T),j(PT)) = 0. 

We note that for a given value of u = j(T), the following set of p + 1 functions, 

(1.3b) V0 j(PT), Vk = k (k = ... 1P- 1), 

is invariant under (li.c). It is easy to see this for TF -F + 1, while for T --1/-, 

we need only show that Vk -- Vk* for kk* + 1 _0 mod p. It follows that there is a 
polynomial equation p (uv) = 0 for which, when u = jj(T), the solutions in v are 
(1.3b) (namely the modular equation of order p). It is irreducible and symmetric 
in u and v, by comparison of voo and vo = j(T/p)), and of degree p + 1 in either 
variable separately. 

Indeed, if !?T -* ?oo, then q - 0 and j(T) 1/q, so the set (1.3b) satisfies 

(1.4a) v00u, ka U lp ) p k (k = O. ..,1 p-1). 

(Here u(1/P) is a principal root and p is a primitive pth root of unity.) The relations 
as q -* 0 can be rewritten symmetrically as 
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1.5 Lemma (Mahler). A symmetric polynomial gp(u, v) of degree p + 1 in each 
variable which satisfies the relation (1.4b) for all branches as u or v approach oc 
must have the form 

p 

(1.5a) gP(u, v) =uP+ 1+ vP+1 - UP + E aijuiv, aij=aj,,app=. 
i~j=o 

We shall call such a polynomial a "p-Newtonian (modular) polynomial." As 
lul + IVI - 00, 

(1.5b) gp(u, v) UP+? + VP+l _ uPV 

Note that if gp(u, v) = 0, the relations (1.4b) must follow from (1.5b). 
The case p = 5 is shown in Figure 1. The coefficients aij are present at the 

heavy dots (i, j), but they are redesignated as explained in ?2 below. These dots lie 
in the polygonal envelope shown (called "Newton's polygon") determined by slopes 
-p and -1/p corresponding to (1.4ab) and (1.5b). 

25' 20 15 10 05 

25 2 1 10 1" 5 

l~~~~~~~~~E 
, ~~ /. , ~ , 

27 22 1' 12 7 2 

.~~~ 

28~ 2/3 18 13 8 3 

290 2i 19 1 9 

FIGURE 1. Coefficient display for the 5-Newtonian polynomial 

The numbering of a,, proceeds down by row and left by column starting with 
a5,4 = ao. We find, however, that gaps in the numbering of a,, must occur when 
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j > i, since, by symmetry, aij = aji (which has already been designated). Thus, 
after a4,0= a9, we next arrive at a3,4 = a4,3, which has been designated "a6," so 
we designate the gap as the next coefficient "aio = O." Also note the renumbering 
ignores the coefficient -1 in -u5v5 and 1 in u6 (also in v6, not shown). 

The main exercise is to take an arbitrary (formal) Laurent series 

(1.5c) u(q) = 1/q + co + clq +C2q2 + c3q3 +? , 

and inquire if (as an identity in q) 

(1.5d) gp(u(q), u(ql)) = 0 

for gp(u, v) a p-Newtonian polynomial. Clearly, j(T) in (1.2b) must work (for the 
correct modular equation (1.5a)), and these trivial expansions also work for "trivial" 
p-Newtonian polynomials (as seen by elementary algebra): 

(1.5e) u(q) = 1/q, 1/q + q, 1/q - q (pi# 2). 

All solutions to the p-Newtonian equation (1.5a) have the property that the 
symmetric functions of the roots (1.3b) are polynomials in u(q). In particular, in 
(1.5d) we could also write 

(1.5f) gp(u(q),u(q /Ppk)) = 0 (k=0,... ,p-1). 

Therefore, the Hecke transform on (u(q) =)f (T), namely 

(l.5g) Tp(f (T)) = f (pT) + T f k 
k=0 

is a polynomial of degree p in f (T) (or in u(q)). 

1.6 Main conjecture (McKay). If a specific Laurent series u(q) in (1.5c) having 
integral coefficients satisfies two p-Newtonian polynomial equations (1.5a) (for two 
distinct prime values of p), then the series u(q) - co is restricted to a bounded class 
of functions (independent of the two primes). 

Either the series (1.5c) is trivial (as in (1.5e)) or else it comes from a (bounded) 
class of "extended" modular functions (as defined in ?4 below) which are 
"Hauptmoduls" (global uniformizing parameters). 

To complicate this exposition, these Hauptmoduls were recently tabulated from 
the study of a more recondite (finite) set of "replicable" functions (see [1,7])! These 
functions arose in the character theory of the Monster group and will be avoided 
here except for the remark that they come from equations based on a variant of the 
property of the Hecke transform (1.5g) (also see [13]). 

The Main Conjecture shall be verified for the pair p = 2,3 (in ??3 and 4) and 
applied (in ?5) to: 
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1.7 Main theorem (Computational Result). If some nontrivial Laurent series in 
integral coefficients simultaneously satisfies some p-Newtonian polynomial equations 
for 15 special values of p, the so-called "Fricke-Monster" primes (see ?4 below): 

(1.7a) p = 2,3,5,7,11,13,17,19,23,29,31,41,47,59,71, 

then the Laurent series must be j (T) (to within an additive constant). 

The reader is reassured at this point that the theoretical results needed on ex- 
tended modular functions shall be cited in ?4, and no theoretical result from the 
theory of replicable functions is used. 

It is probably true that the restriction to "integral coefficients" need not be 
made, but the computational burden would be tremendously increased without it. 

2. THE LAURENT SERIES MANIPULATION 

It is necessary to reorganize the coefficients of gp(u,v) into a more computer- 
friendly sequence (compare [12]). Figure 1 (for p = 5) serves as a convenient model 
for general p. There are 

(2.1a) P = p(p + 3)/2 

distinct coefficients aij, as we see by counting lattice points on or below the diago- 
nal. We renumber the aij by columns starting on the upper right and going down 
and left. Putting this process into symbols, we now designate a single-index system 
by 

(2.1b) aij := aQ-pijj (O < i < p + 1, 0 < j < p), 

where i is the number of the column counting left, and j is the number of the row 
counting down, and the highest numbered index is 

(2.1c) Q = p2+p-1 

(making for Q + 1 single-indexed coefficients). Also, there are 

(2.1d) D = Q+ 1-P (= p(p-1)/2) 

double indices (i, j) which lie above the diagonal and have no coefficient aij asso- 
ciated. Now for these D coefficients, we define 
(2.1e) 
at := 0 for t E A ={2p;3p,3p+1;4p,4p+1,4p+2;... ;p2,p2+1,... ,p2+p-2}. 

Thus, card(A) = D. Observe the following table: 

p 2 3 5 7 ... 71 
P 5 9 20 35 ... 2627 
Q 5 11 29 55 ... 5111 
D 1 3 10 21 ... 2485 
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We finally expand (1.5d) as 

(2.2a) Gp(q) gp (u(q), u(ql)) = 
E qQ 

Note the principal part of the expansion is a pole of order Q. Actually expanding 

Gp(q), we find the single-indexing of coefficients produces the following simple set 
of relations: 

(2.2b) 'Yo = ao - pco, 

(2.2c) ,i = ai - pci + hi (1 < i < Q), 

where 

(2.2d) hi E Z [ao .... ai-1; co, .... , ci-1] 

Also, since Gp(q) must vanish identically (or -Yi = 0), we see how the coefficients 

cj of a given Laurent series determine the coefficients at of the polynomial gp (u, v). 
Indeed, at = 0 for t E A, so for these t, ct is determined by the earlier coefficients, 
i.e., 

(2.2e) ct E Z[1/p, ci (O < i < t)], for t E A. 

There are D such identities among the ct for 0 < t < Q. For t > Q, essentially the 
undefined at can be taken as 0, so 

(2.2f) ct E Z[1/p, ci (O < i < Q)], for t > Q. 

We now think of the Q coefficients ci for 0 < i < Q (with i ? A) as determining 
both the p-Newtonian polynomial gp (u, v) and the Laurent series u(q). Then we 
can eliminate the coefficients ai completely and rewrite (2.2a) as 

(2.2g) Gp(q) = Ei=0 mq P ~~qQ 

where there are D nonvanishing mi for 0 < i < Q. 
Before considering examples, we shall agree to eliminate the additive constants 

by setting co = 0. 

ORDER2: P = 5,Q = 5,D = 1 

Here, 

(2.3a) 92(u, v) = u3 +v3 -u2v2 +a5+a3(u+v)+a2uv+al(u2?+V2) +ao (u2v+v2u). 

We next compute G2(q) := 92(u(q), u(q2)), with u(q) given by (1.5c), as 

G2(q) = ao/q5 + (ao + ai - 2c,)/q4 + (a2 + 1 + aoci - 2C2)/q3 

+ (c1 - 2c3 - c12 + a3 + a1 + ao(2c1 + C2))/q2 

+ (a2c1 - 2c4 - 2c1c2 + ao(c3 + 2C1 + 2c2) + 3c1 + a3)/q 

(2.3b) +(4aici + 4c2 - 4c12 - 2c5 - C22- 2c1c3 

+ ao(c, + 2c3 + c12 + C4) + a2c2 + a5) 

+ 0(q). 
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So we substitute the values of ao, ... , a5 required for the vanishing of G2 (q): 

ao = 0, a, = 2ci, a2 =2c2-1, a3 = 2c3 + c12-3cj, 

(2.3c) a5 = -4c2- 3c2 + 2c5- C2 + 2c1c3. 

Then, looking at the mo,... ,m4 of (2.2g), we find (D =) one singular term in 
G2 (q) for m4 as follows: 
(2.3d) 

G2(q) =(-c1 - 2C4 + 2c3 + c12)/q 

+ (2clc3 + C13+ 2c3 - 2cC4- 2c6 + 2cc2 -c)q 

+(2C2C3 + 2clC3+C12C2 + C13 + 3cC2 - C12 

- 2C7 - 2c1c5 - c32 + C3 + 2c4)q2 

? (2c32 + C3C12 + 3c1c3 + c22 + 2c5 + c13 + 2ci2c2 

- c1 C2 - 2c8 - 2c4c3 - 2c1c6)q3 

? (C4 + 2c6 - 2cg + 3cC4 - 2c1C7 + 4c2c3 - 2c3c5 

+ 2C4C3 - C42 + 2c12C2 + C12c4 + 2c1c22)q4 + O(q5). 

We find all coefficients expressible in terms of c1, c2, C3, C5 (note the omission of 
C4). These equations follow from (2.3d): 

C4 = 
-1/2ci 

+ C3 + 
1/2ci, 

C6 = C3 + 1/2c12 + C1C2 - 1/2c1, 

C7 = C2C3 + ClC3 + 1/2c12 C2 + 1/2ci3 + 3/2clC2 - ClC5 

(2.3e) - 1/2c32 + 3/2C3 -1/2c, 

C8 = ClC3 + 1/2c22 + C5-1/2C2, 

c9 = 3/2c3 - 3/4c1 + 3/8c12 + C2C1 + 2C2C3 + 1/2c32 

- C5C3 + 3/4c13 - 1/2c2c12 - 1/2c3c12 + CgC22 

+ C12C5 + 1/2c1c32 - 1/2c2c13 - C1C2C3 - 3/8c14. 

ORDER 3: P = 9,Q = 11,D = 3 

Here, 

93(Uv) = u4+ v4 -u3v3 all + a8(u + v) + a7uv + a5(u2?+ v2) 

(2.4a) + a4(U 2v + v2u) + a3u2v2 + a2(u3 + v3) + a,(u3v + v3u) 

+ ao(u32 + V3U2) 

The requirement G3 (q) := 93 (u(q), u(q3)) = 0 yields, as before, 
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ao = 0, ai = 3c1, a2= 3c2, a3= 3c3, a4= 3clc2+ 3c4, 

a5 =-4c1 - 3c1c3 + 3c22 + 3c5 + c13, 

a7 =-3C32 - 1 + 3c5c1 - 9c12 + 3c4c2 3c7, 

a8 = -4c2 + 3c8 + 6c5c2 3c6c1 + 3c12c4- 3c1c3c2- 3c4c3 

(2.4b) - 6c12c2- 6c1c4 - 9c1c2 + c23, 

a1l = 3c1c2c6- 3c1c5c3- 3c2c4c3- 12c1c4c2- 4c3 + 3c1l - 6c42 

- 12c5c1 + 3C52 + 4c12 - 9c22 + 6c2c8 - 3C3C7 + 3c6c4 + 3cgcl 
- 12c1c22 + 3c7c12 + 3c1c42 + 3c5c22 

- 6c12c22 + c33- 4c14. 

When we substitute these values into G3(q), it becomes a series in mt (again note 
the omission of identically vanishing terms): 

(2.c) 3 _q =m6q 
6 ? 

mgq9 
? 

mj0q10 + 1q12 + 1q13 + 14q1 (2 .4c) G(q-q 
q11 

The (D =)3 singular terms have the coefficients 

M6 = -3c6 + 3c1c2 + 3c4, 

(2.4d) mg = -c1 3C5- 3cg + 6C4C2 + 3c1C3 + 3C22- 6c6c2 + 6c1C22 + C13, 

(*.4d) mio = 3c1c3c2 - C2 + 3c8- 3c1o - 3c5c4 + 6c2c5 + 3c1c6 + 3c3c4 

- 3c1c8 - 3c2c7 + 6c4c12 + C23 3c2c13 - 3c6c12. 

Thus, the series u(q) and the 3-Newtonian polynomial g3 (u, v) are both determined 
by the coefficients c1,... , c1l1 (with the D = 3 omissions c6,c9,c10, which are de- 
termined by equating the expressions in (2.4d) to 0). 

3. SIMULTANEOUS MODULAR EQUATIONS 

We now consider the results of the simultaneous substitution of 

(3.1a) u(q) = 1/q + cq + c2q + c3q +... 

into two p-Newtonian modular equations (1.5d), for p = 2 and p = 3. 
The easiest place to start is with the 2-Newtonian modular polynomial g2(u, v). 

It is determined by the quadruple c1, c2, C3, C5 from which we find C4 and C6, C7,.... 

as in (2.3e). So all coefficients ct in (3.1a) are now functions of c1,c2,c3,c5 alone. 
(It turns out that we shall have to go as far as c17 for now and as far as c28 later 
on). 

Turning our attention to the 3-Newtonian modular polynomial g3(U, v), we find 
from (2.4bcd) that c1, c2, C3, C4, C5, C7, C8, Cii determine the polynomial g3(U, v) and 
more importantly the same series (3.1a) (including c6, c9, c10). Obviously, the pro- 
cess of reconciliation with the identities from g2(u, v) must involve values of the 
quadruple c1, c2, C3, C5. 

We go back to (2.4d) and substitute the information from (2.3e). Then coefficient 
mj in (2.4cd) becomes Mj (in terms of only c1,c2,c3,c5) as follows: 
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M6 -M6 = 0, 

,-m Mg = 5/4ci - 9/2c3 + 3c5- 9/8c,2 - 3c1c2 + 3c1c3 + 3c22 - 6c3c2 

- 3/2c32 + 3C5C3 + 3/2c2c12 + 3/2c12c33- 3C1C22 + 3C2C1C3 

(3.1b) - 5/4ci3 - 3/2clc32 - 3C5C12 + 3/2c2c13 + 9/8C14, 

mio - Mio = 3C2C5C1 + 3/2Cl - 5/2C2- 3C3 + 3C5- 3/2c12 + 3/2c1C3 

? 3/2c22 - 15/2c3c2 + 3C32 - 3/2C5C + 6c5c2- 3C5C3 

+ 3C2C12 + 3/2c12c33- 6c1c22 - 3/2c13 + C2 3- 3C3C22 

- 3/2C5C12 + 3/2C2C32 - 3/2c2c13 + 3/2c14 - 3/2C12C22. 

For the elimination process we also need to express M14 and M17 as functions of 
Cl, C2, C3, C5. These formulas are found by the same procedure, but are too long to 
reproduce here. 

The generating quadruples c1, C2, C3, C5 for u(q) are, of course, found from elimi- 
nation from all the Mk = 0. To obtain them, we note it is necessary (but not likely 
sufficient) that the quadruples are simultaneous roots of four coefficients 

(3.2a) M9, Ml0, M14, M17 

(chosen for reasons which become clear later on). 
We use the notation 

(3.2b) A Cx j = C5-resultant(Mi, Mj). 

These are functions of Cl, C2, C3 only. We denote 

(3.2c) Mixjxk = C3-resultant(Mixj, MAXk). 

These are functions of C1, C2 only. 
We note that in the case p = 3 (by substitution of the relations (2.3e) for p = 2), 

some of the Mj will acquire an algebraic dependence. Thus, M6 becomes identically 
0 and M9gX2 does not contain any information not already in Mgxlo. The choices 
in (3.2a) were discovered by trial and error to lead to independent functions of 
Cl, C2, C3 

(3.2d) M9 xo, M9X14, M9x17, 

and to further lead to independent functions of c1, c2, 

(3.2e) M9x1ox14, M9X1oX17. 

We might think that it is only necessary to eliminate (say) c2 from (3.2e) to find 
a finite set of c1 and work backward to the quadruple c1, c2, C3, C5 (so as to provide 
roots of (3.2a)). This cannot be done directly because of common factors, i.e., 

M9X1X 14 = (c 29- (Cl, C2)P4(Cl, C2) 

(3.3a) M9X1oX17 = (c1 -1)3P34(Cl, C2)P4(Cl , C2)3 

P4(c1, c2) = 24 - 2c1 - 35c12 + 3c13 + 12c14 - 36c1c22 + 48C2 + 24C22. 

Here, Pn( ) denotes a nonfactorable polynomial in Z[...] of total degree n 
in its variables. (Happily, in this context the degree happens to distinguish the 
polynomials). 
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TABLE I. Series satisfying Newtonian equations of order 2 and 3 

Case cl C2 C3 C4 C5 Ident. Genus 

1 196884 21493760 864299970 20245856256 333202640600 1A 0 
2 134 760 3345 12256 39350 5A 0 
3 51 204 681 1956 5135 7A 0 
4 17 46 116 252 533 11A 0 
5 12 28 66 132 258 13A 1 

6 9 10 -30 6 -25 5B 0 
7 7 14 29 50 92 17A 1 
8 6 10 21 36 61 19A 1 
9 -6 20 15 36 0 5a 1 
10 4 5 10 16 25 25A 1 

11 4 7 13 19 33 23A 0 
12 3 3 6 9 13 31A 1 
13 3 4 7 10 17 29A 2 
14 2 2 3 4 7 41A 3 
15 2 3 5 6 10 35B 2 

16 2 8 -5 -4 -10 7B 2 
17 2 1 1 2 3 55A 1 
18 2 1 2 3 4 49a 3 
19 -1 0 0 1 0 25a 2 
20 -1 2 1 2 -2 13B 2 

21 1 0 1 1 1 95A 2 
22 1 0 0 0 0 (1/q + q) 0 
23 1 2 3 3 5 47A 1 
24 1 4 6 6 10 35A 1 
25 1 1 2 2 3 59A 3 

26 1 1 1 1 2 71A 2 
27 1 -1 1 1 0 35a 2 
28 0 0 0 0 0 (1/q) 0 
29 0 0 1 1 1 119A 3 

The identifications are after the table of McKay and Strauss [14]. The genus 
refers to the 2-Newtonian equation in each case. 

So to find the values of cl (in addition to the obvious cl = 1), we find the 
resultants of P29, P34, P4 taken two at a time. In effect, 

c2-resultant (P29,P4) = (cl + 1)2 (cl - 2)2P24 (cl)P48 (cl), 

c2-resultant(P34,P4) = (cj + 1)(cj-2)P92(C1), 

(3.3b) c2-resultant(P29, P34) = Ci5(Cl - 196884) (ci - 134)(ci - 51)(c, - 17) 

(c, - 12) (c - 9) (c - 7) (c - 6) (cl + 6) 

(c1 - 4)2(Cl - 3)2(Cl- 1)54(Ci + 1)3 

(c, - 2)7P134(c1)P518(c1)- 
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Thus, working backwards from the integral values of c1 displayed as roots in (3.3b), 
we find c2 from any one of the polynomials in (3.2e), C3 likewise from (3.2d), and 
C5 from (3.2a). 

As a result, we find 29 integral cases shown in Table I, with C4 calculated from 
(2.3e). (If we had not made the restriction of integrality, there would be literally 
hundreds of additional quadruples arising from the polynomials Pn(ci) in (3.3b).) 

Obviously, j (T) - 744 is present (Case 1). All solutions have been assigned 
identifying symbols, which shall be discussed in the next section. (The genera of 
the corresponding 2-Newtonian modular equations are of possible interest as they 
show all possible values for a quartic.) 

4. THE EXTENDED MODULAR FUNCTIONS AND GROUPS 

To interpret the various cases in Table I, it is necessary, at the very least, to 
introduce "extended" modular functions and groups. This concept is assuredly not 

part of the "brute force" calculation in the Main Theorem (above), but it is part 
of the theoretical verification. 

The traditional Klein modular group F operates on H+, the upper-half T-plane 
so as to preserve j(T). For a given N C Z+, we next define FO (N), the subgroup 
of F which keeps j (T/N) as well as j (T) invariant. Then FO (N) has an extension 
Fc(N), which was discovered by Fricke and Bessel-Hagen [10] in 1929 and proved by 
Atkin and Lehner [2] in 1970 to be (within equivalence) a maximal discrete normal 
extension group of IF0(N) in SL2(R). In particular, Fc(N) is a collection of sets of 
matrices ST (over Z) indexed by T, a divisor of N restricted to primary factors, 
i.e., 

(4.1a) TIN, gcd(T, N/T) = 1. 

The matrices in ST are represented for convenience by the linear fractional formu- 
lation T' = ST(Tr) with coefficients in Z. Thus, 
(4. lb) 

rc (N) = {ST}, ST : f' = C + 
C D AD-BC =T, Tjgcd(A,D),TjNjB}. 

Of course, Si = FO(N). Thus, as special cases, 

(4.1c) {T' = T + N} E Si, {T' = -N/T} E SN. 

When N is 1, 2 or 3, the above transformations are sufficient to determine Fc(N), 

but in general the situation is more complicated (see [4,6]). (The subgroup F* (N) = 

Si U SN is more usually associated directly with Fricke [9].) 

4.2a Definition. An extended modular function is one associated with a subgroup 
of some Fc(N) or an equivalent. The minimum such N is the level of the extended 
modular function. 

4.2b Lemma. For cases where FC(N) is of genus zero, the global uniformizing 
parameter (Hauptmodul) jN (T) satisfies a p-Newtonian modular equation (relating 



1306 HARVEY COHN AND JOHN MCKAY 

jN(T) and jN(pT)) if and only if gcd(N,p) = 1. The same holds in IF(N) and 
F* (N). 

A proof can be found in [6]. Some Hauptmoduls of subgroups will also enjoy the 
property of the p-Newtonian modular equation, but not so in general. It should be 
understood that "q" may have to be interpreted as exp 2TriT/N as the case requires 
(because the general translation at oc in IF(N) is T -> T + N). 

4.3 Remark on replicable functions. All 29 cases in Table I are identified from 
the larger table [14] of replicable functions. These functions are each associated 
with a (generalized) level N and each has the property that it may not satisfy a 
p-Newtonian equation when p1N. To make this work more self-contained, we shall 
verify this property as needed (from Lemma 4.2b only). 

We make more direct use of the theory of extended modular functions. There 
are tabulations (see [4]) of the values of N where FC(N) is of genus zero. They 
show 64 cases as follows: 

(4.4a) N = 2,3,4,5,6,7,8,9,10,12,13,16,18,25, 

where FO (N) is of genus zero to begin with; also, 

N = 11, 14,15,17,19,20,21,23,24,26,27,29,31,32,35,36, 

(4.4b) 39,41,47,49,50,59, 71, 

where F* (N) is of genus zero (Fricke's cases) [9,3], and, finally, 

N = 22,28,30,33,34,38,42,44,45,46,51,54,55,56,60,62,66,69, 70, 

(4.4c) 78,87,92,94,95,105,110,119, 

where FC(N) is of genus zero. (Note FC(N) = F*(N) when N is a prime power.) 
The 15 primes in (1.7a) used in the Main Theorem 1.7 are those which divide 

the values of N in (4.4abc). Note that they are already present in Fricke's shorter 
list (4.4ab). They were first observed by Andrew Ogg to be the same as the prime 
divisors of the order of the Monster group. 

5. COMPLETION OF THE COMPUTATION FOR THE MAIN THEOREM 

In Table I we ignore the trivial Cases 22 and 28, and (the desired) Case 1, thus 
leaving 26 cases which we must eliminate in order to prove the Main Theorem. For 
these 26 cases, we invoke the condition that the series for u(q) must simultaneously 
satisfy some other p-Newtonian modular equation forl p(> 3) a Fricke-Monster 
prime. In the identifications (from the table in [14]), the number is the level (> 1). 
The letter is more arcane, but the "A" denotes a Hauptmodul JN (T) of FC(N) and 
the "B" denotes a Hauptmodul of FO (N). 

We first reduce the job by eliminating the 10 cases (out of the 26) where the 
identifying index is divisible by 5 in Table I. (For these cases the Hauptmoduls do 
not all come under Lemma 4.2b.) We now use a combination of Newtonian modular 
equations for p = 2 and 5 (as we had done before with p = 2 and 3). A complete 
computation of four independent eliminants Mt as in (3.2a) might require enormous 
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values of t, but a partial computation is effective enough. We use equations of type 
(2.3e) to recompute values of ct for the 2-Newtonian modular equation (this time 
up to t = 28) as functions of the basic Cl,C2,c3,c5. Then, as in ?3 (above) we 
expand a 5-Newtonian g5 (u, v) into 

00 

(5.1a) G5(q) := g5(u(q),u(q5)) = giqilq29 
i=O 

(note Q = 29 and D = 10). Then the process of discovery of the (P =)20 coefficients 
of g5 (u, v) will dispose of 20 coefficients of (5.la) and leave 10 values in the principal 
part of (5.1a). Thus as in (2.4c), the equation (5.1a) shows 10 singular terms 

G5(q) = [mloql0 + m15q15 + m16q16 + m20q20 + m21q21 + m22q 
25 26 27 28 29 (5.lb) + m25q + m26q + m27q + m28q + ]lq 

(Compare the coefficients at = 0 in Figure 1.) Actually, some of these mt vanish 
identically as a result of the dependence of the 2-Newtonian relations (2.3e) of the 
Ct. 

We test all 10 cases in Table I where the indicated level is divisible by 5. In these 
cases we substitute C1, C2, C3, C4 into the mt present in (5. ib). Remarkably, we must 
go as far as M26, iM27, M28 before we find any mt (actually all three) unequal to 0 
for (just) these 10 cases. 

If we return to our list of genus zero cases (4.4abc), we see that removal of prime 
factors 2, 3, and 5 leaves us with 14 genus zero cases: 

(5.2) N = 7,11,13,17,19,23,29,31,41,47,49,59,71,119. 

Now there must be a Hauptmodul for Fc(N) in each of these cases, as shown by the 
"A" designation (including, exceptionally "49a"). These 14 cases would necessarily 
be removed by the failure of the coefficients of any p-Newtonian equation for plN, 
by Lemma 4.2b. 

This leaves us with only (26-10-14=) two recalcitrant cases from the original 
29 in Table I, namely (Case 16) "7B" and (Case 20) "13B." Both of these are 
Hauptmoduls for FO (N). So by Lemma 4b, they too would be likewise removed by 
p = 7 and 13, respectively. (Note these are the only two primes > 5 which appear 
in (4.4a).) 

The proof of the Main Theorem is now complete. 

6. INDEPENDENCE OF THE PROOF OF THE MAIN THEOREM 

In the course of the proof of the Main Theorem, it was interesting to be aware of 
McKay's Conjecture, and it was edifying to identify and label the cases by the table 
in [14]. Yet the 26 cases could be eliminated independently. Indeed, the first 10 
are first identified and then eliminated by checking the 5-Newtonian equation (as 
before). The remaining 16 cases are disposed of by the "coincidence" of 16 available 
Hauptmoduls (with integral coefficients), namely the 14 in (5.2) where the genus 
of rC(N) is 0, and the two cases N = 7,13 where rF(N) has genus 0. In each case 
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some p(> 5) divides N, and for this p no p-Newtonian equation is satisfied. (Of 
course, we do not have to know which case was which!) 

Note that the proofs in ??5 and 6 do not require that the lists (4.4abc) be complete 
(although this is strongly believed). 

7. CONCLUDING REMARKS 

The main computation lies at the fringe of the SUN-Maple capacity. We can only 
hope that future computer algebra systems will permit the simultaneous solution of 
p-Newtonial modular equations for larger pairs of p (indeed up to 71). If McKay's 
Conjecture 1.6 holds, this would be a theoretically easy way to find all the extended 
modular Hauptmoduls (with integral coefficients). On the further assumption that 
no value of N has more than three prime divisors, it suffices to take 10 pairings of 
p E {2, 3, 57, 11} to obtain a list of all Hauptmoduls. (This is a little bit closer to 
the capabilities of current computers.) 

Also, Table I provides a possible proof that even if the lists (4.4abc) are incom- 
plete, no more prime divisors will occur beyond those listed in (1.7a). Obviously, 
no other primes occur in the identifiers of Table I, and if some composite N existed 
for which Fc(N) had genus zero, the same would be true of its prime divisors by an 
elementary argument on the projection of a Riemann surface to one of (necessarily) 
no greater genus. 

Finally, the algebraic dependency among the variables Mt (as in (3.1b)) seems 
intractable. For instance, Mt for t = 11, 12,13 are dependent on Mg and M10. 
It is unlikely, however, that all Mt can be dependent on just the four cases t = 
9,10,14,17 in (3.2a). For if so, all hundreds of irrational roots cl in (3.3b) would 
lead to legitimate Laurent series solutions of the p-Newtonian equations for p = 2 
and 3. 
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